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His steadfast work focused on the structure and biosynthesis of natural products, and mechanisms and

stereochemistry of related biochemical processes, foreshadows important insights in our own investigations
presented here.

In this work, we present algorithmic modifications and extensions to our quantum-mechanical approach for
the inclusion of solvent effects by means of molecule-shaped cavities. The theory of conductor-like screening,
modified and extended for quantum-mechanical techniques, serves as the basis for our solvation methodology.
The modified method is being referred to as COSab-GAMESS and is available within the GAMESS package.
Our previous work has emphasized the implementation of this model by way of a distributed multipole
approach for handling the effects of outlying charge. The method has been enabled within the framework of
open- and closed-shell RHF and MP2. In the present work, we present a) a second method to handle outlying
charge effects, b) algorithmic extensions to open- and closed-shell density-functional theory, second-derivative
analysis, and reaction-path following, and c) enhancements to improve performance, convergence, and
predictability. The method is now surtable for large molecular systems. New features of the enhanced continuum
model are highlighted by means of a set of neutral and charged species. Computations on a series of structures
with roughly the same molecular shape and volume provides an evaluation of cavitation effects.

Introduction. ± In the development and refinement of continuum-solvation models
(CSMs), highly accurate continuum-dielectric models are a desirable endpoint [1 ± 6].
Noncoupled iterative solute-specific shell approaches, including those of higher-order
quantum-mechanical methods, such as coupled cluster [7] [8], M˘ller�Plesset [9 ± 11],
and multiconfigurational theories [12 ± 14], are now applied in this pursuit. Nonethe-
less, it is instructive to focus on some fine details of continuum-model implementations
relevant for accurate predictions of chemical and biochemical systems, as well as in the
efficiency and extensibility of CSMs. Particularly pertinent to our −COSab× model, are
details that include methods to incorporate outlying-charge effects (which are mostly
lost in the evaluation of Ediel) [15], nonelectrostatic components of the total solvation
energy (e.g., cavitation), and self-consistency and convergence properties. As well, we
have now implemented the ability to carry out open- and closed-shell density-
functional-theory (DFT) computations, second-derivative analysis, and reaction-path-
following studies, which provide substantial upgrades to our model capabilities.
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While, in most CSMs, a molecular-shaped cavity is constructed around the solute of
interest and the volume outside of that cavity is defined as a dielectric continuum that
represents the solvent, it is important to keep in mind that, when used in conjunction
with wave-function-based ab initio methods, the cavity, constructed from solute
coordinates only, is typically outside the loop of the quantum-mechanical self-
consistent-field-iteration procedure. The consequence of this is that, depending on the
solute of interest and the level of the electronic-structure theory considered, some
electron density can reside outside of the cavity (Fig. 1). This phenomenon, which we
denote −outlying-charge error× (OCE) [15], has been addressed in the literature, and
several strategies have been proposed to handle this loss of energy [10] [16 ± 21]. We as
well as others [22 ± 27] have shown specific cases where OCE can be quite large,
particularly for solute systems with rather diffuse electron density (e.g., for anions,
OCE can be up to 25% of the solvation energy). Indeed, coupling of CSMs with
quantum-chemical calculations reveals that proper treatment of OCE in the
computation of electrostatic solvation can provide higher accuracy and better
understanding of the reaction-field approach.

Although original approaches to account for OCE involved correction of the
screening charges through the use of scaling factors, it has been pointed out that such
strategies are not rigorous: even though they may, in fact, correct the global error in the
screening charges, they leave local errors as well as error in the potential [15]. In the
context of the present model, two prominent methodologies, the distributed-multipole
(DM) approach [10] [16], and the double-cavity (DC) approach [15], have been
proposed to account for local correction of the screening charges and of the potential.
With the DM method, OCE is included as part of the description of the solute through
construction of an atom-centered distributed multipolar representation of the electron
density (up to hexadecapoles). The method has been shown to be readily implemented
and highly accurate [10] [11] [16].

The DC scheme [15] involves construction of a second molecule-shaped cavity after
a normal COSab calculation, one that lies an appropriate distance further out from the
original one to enclose entirely the full electron density of the solute. In the context of
this method, there are two possibilities for implementation to evaluate OCE. The
scheme that is currently implemented creates the secondary cavity as a final stage in the
analysis to obtain −corrected× charges, which include the perturbation from the part of
the electronic wave function that extends beyond the inner cavity. These charges are

Fig. 1. Exaggerated view illustrating wave-function −leakage× outside a molecular-shaped cavity, which is shown
here as abruptly −cutting off× the molecular orbital
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then projected back onto the primary cavity, and the corresponding −corrected×
potential is calculated. In principal, one could forego the projection, and, instead,
simply correct the potential with the charges in place on the secondary cavity, which
also leads to an OCE correction. We feel that the former method is the more-efficient
and the more-stable of the two, and enables one to adequately account for outlying
charge.

Both DM and DC schemes provide very accurate predictions of solvation
phenomenon. A systematic comparison in terms of practicality, accuracy, and
extensibility illustrates the relative merits of the two methods, both in the present
work as well as the companion application paper. On the basis of a similar comparison,
several algorithmic enhancements to our combined methodology show clear benefits
for the prediction of general solvation phenomenon in reaction processes.

In the accurate treatment of solvation phenomenon for large-molecule systems,
issues of efficiency, nonelectrostatic effects, and extensibility to other models are key to
methodological advancement. We have introduced several developments to address
such issues and enable a clear path forward in our development approach.

Theory. ± Our approach to solvent modeling is based on the original concepts of
screening in conductors, COSMO, presented by Klamt [28]. We have developed this
basic approach more expansively to solvation modeling for quantum chemistry in
several key areas [16], and have established that it a) is highly accurate, b) has the
potential for extension to important large-scale molecular-modeling techniques, and c)
provides the sound basis needed to carry out fundamental investigations of full reaction
processes (e.g., see companion paper). We have presented extensions of the method to
include dynamic correlation via M˘ller�Plesset theory [10] as well as DFT [29] and
extensions to include second-derivative analysis for computation of vibrational analysis
in solution [29], both of which are necessary for many chemical and biochemical
investigations, an example of which is provided in the companion paper. As the basic
methodology has been outlined in detail elsewhere, the following entails only those
details pertinent to the present discussion.

Important concepts of solvation phenomena lie in the details of the more-subtle
features of CSM approaches, providing a better understanding of how to not only
maximize accuracy and predictability for complex molecular environments, but also to
better understand how to further enhance the method and even create novel hybrid
techniques for application to particularly large molecular systems. Key to any of these
lies in the description of charge distribution and the construction of the molecular
cavity, which acts as the boundary interface between the solute and the solvent. In our
approach, which is an approximate but very accurate noniterative approach formulated
in terms of a Greens function [28], one is allowed to express the screening-charge
distribution � as a linear function of the electronic-charge distribution �(r). Thus, the
solvation energy, represented as a quadratic expression with respect to �(r), can be
included in the Hamiltonian of the solute, analogous to that of the Coulombic
interactions, as soon as the corresponding dielectric operator (i.e., the Greens function
of the dielectric cavity) is evaluated. As a consequence, this method not only eliminates
the iterative procedure, but also allows calculation of analytical gradients (hence,
geometry optimization) without shape constraints.
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The solute molecule is enclosed by a cavity consisting of m surface segments with
corresponding potential, �� (�1,. . .,�m). The potential, �, is directly related to the
charge distribution, Q, of the solute, i.e., of the positions and charges of the nuclei, and
the electron density. This potential evokes screening charges, q� (q1,. . .,qm) that arise
from the polarization of the continuum. The matrix A is defined to be the Coulombic-
interaction matrix of these screening charges. In principle, � can be evaluated directly
and exactly from the charge distribution by direct integration within the quantum-
mechanical procedure. Such direct integration of the potential may cause some
problems with a small part of the electron density that extends outside the cavity [15],
since the cavity is constructed based on the coordinates of the solute alone and not
based on the electrostatics. As mentioned above, when the OCE is not corrected,
serious discrepancies result in predictions of the solvent-environment effects OCE. In
this work, we specifically consider two effective methods for inclusion of OCE into our
solvation model, each of which not only presents interesting perspectives into
continuum models, but, when compared and contrasted, enable a deeper understanding
of the continuum-model approach.

DM Method. In our initial continuum-model developments, we found it advanta-
geous to representQ by a set of kmultipolesM(Q), in addition to evaluating the charge
distribution by direct integration. Thus, � is approximated by the potential, ���
BM(Q), which arises on the m segments from the k multipoles, where the (k�m)
matrix B corresponds to the Coulombic-interaction matrix of the multipoles with the
segments. In the present implementation, a distributed multipole analysis is used [30 ±
32] that takes into account spherical multipoles up to hexadecapoles for each atom. As
such, although the direct integration produces a solvation energy that is subject to some
OCE, the screening charges themselves are calculated from the multipole potential,
which is insensitive to OCE. Note that this total energy includes the back-polarization
of the solute by the solvent. In the end, the self-consistent-field (SCF) energy includes
the cost of back-polarization, and the corresponding energy gain, which is about twice
as large as the back-polarization cost, is subsumed in the dielectric energy. The resulting
method is very accurate and cost efficient, and has the advantage of having limited
empirical constraints.

DC Method. A second approach for including effects of outlying charge, which has
been the focus of our current efforts, is the DC method originally proposed by Klamt
[15]. The strategy behind this method is to effectively encompass the charge that lies
outside the primary molecular shaped cavity with a secondary molecular shaped cavity.
In general, the primary cavity has been shown to be optimally constructed as a Van der
Waals surface plus 20% [33]. Ideally, one would like to find the optimal expanse of a
secondary cavity such that its surface is at a radius that encloses essentially all of the
solute electron density. Since this is obviously a function of the molecular system, the
initial stages involve creating an outer cavity that represents a ca. 85% expansion of the
inner cavity, (i.e., 1.85� primary cavity radii), which has been asserted to be the
optimal value [15].

The segmentation of the outer cavity corresponds directly to that of the inner cavity,
such that there is a 1 :1 correspondence between outer- and inner-cavity charge points,
q. The outer cavity-segment charges, q�, are calculated via A�q�����, where A� is the
interaction matrix involving the segment points on the outer cavity, and �� represents
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the potential for interaction of the secondary cavity with the solute and the screening
charges from the inner cavity. Since the segmentation points on both surfaces
correspond, the final screening charge is represented as a correction, q�� � q � q�, with
associated potential �����Aq��. The final corrected energy is, as before, half of the
interaction energy needed for the creation of the screening charges, or E��� 0.5q�����.

Theoretical Methods. ± All calculations have been carried out with the GAMESS
software package [34], with a variety of levels of theory employed for comparative
purposes. The wave-function-based methods considered include Hartree�Fock (HF)
[35] [36] and second-orderM˘ller�Plesset perturbation theory (MP2) [37] [38]. For an
illustration of calculations involving density-functional theory (DFT) [39 ± 41], see our
companion paper. For discussion of the effect of basis set on solvated structure and
energetic properties, a variety of basis sets have been employed, including, 3-21G(d)
[42] [43], 6-31G(nd,mp) [44 ± 46], 6-311(nd,mp) [47], DZV(2d,p) [48] [49], TZV(2d,p)
[50] [51], cc-pvdz [52], and cc-pvtz [53].

The solvation calculations were performed with our new version of a continuum
model for ab initio methods, adapted to the GAMESS source, termed the COSab
solvation method. The method has been implemented at the restricted and unrestricted
HF (RHFand UHF), MP2, and DFT levels of theory. The details of the method and its
implementation have been described previously for HF [16] and MP2 [10] [11] and will
not be repeated here. In this study, HF-COSab calculations on gas-phase and COSab-
optimized geometries, as well as MP2-COSab calculations on gas-phase geometries, by
both the DM and DC approaches are performed.

A dielectric permittivity value � of 78.4 was employed for H2O at room
temperature for all calculations. The parameters of the cavity construction are 1082
points for the basic grid, 92 segments on a complete sphere, and a solvent radius of
1.3 ä. Atomic radii were taken from the previous parameterization [33] [54].

Extensions of methodology from details reported previously include finalizations
for treatment of open-shell molecules at the correlated level, a more-accurate surface-
construction routine [55], algorithmic modifications for better efficiency and stability,
and the new DC scheme to account for OCE. The COSab calculations shown here do
not account for any nonelectrostatic interactions, as it is our feeling that it is more
important to address the accuracy of the core method before one includes effects that
tend to be more empirically derived.

Results and Discussion. ± A flowchart for COSab implementation within the
GAMESS software is illustrated in Fig. 2. We highlight several alternatives of strategy
within this diagram that provide reference points for comparison and general
discussion of the ab initio based solvation theories presented here. The first of these
strategy choices involves the method for handling the OCE within the SCF procedure.

There are two OCE components that should be considered to capture its full effect
in any rigorous methodology. The first component involves correction of the screening
charges on the cavity, and the second component involves correction of the electrostatic
potential �arising from the solute-solvent interactions. The two strategies that we have
formulated within COSab address these two components in quite different but equally
satisfying ways. Reference to Fig. 2 helps to illustrate these differences.
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DM Method. In the case of the DM strategy, path A, screening charges are
calculated from the distributed multipole representation of the solute charges and are,
therefore, the −corrected× charges, as they include the full extent of the wave function,
albeit from a point-charge formulation of that wave function. The potential is handled
in two ways. The −corrected× potential is approximated by multiplication of the
multipolar representation of the solute with the coulombic interaction matrix of the
multipoles with the cavity segments. This represents the corrected potential since it
includes the full extent of the wave function. The second potential calculated is the
result of the direct integration via the SCF solution of the HF equations, which now
includes not only the solute coordinates, but also the −corrected× screening charges. In
the end, the difference between the directly integrated potential and the −corrected×
potential represents the error associated with charge lying outside the molecular cavity.
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DC Method. In the DC approach, path B, both corrected screening charges as well
as corrected potential, are handled much later in the calculation procedure ± post-SCF,
in fact. Initially, the screening charges are calculated from the directly integrated
potential of the SCF procedure, and, thereby, are missing the component of charge that
resides outside of the cavity surface. Once the SCF has converged, a second cavity is
constructed, and the corresponding charges are calculated, as described above.

As discussed above, of the possible strategies for calculation of OCEs specific to the
DC method (BOCE� and BOCE�� , in Fig. 2), we have chosen to implement the projection
method. As depicted in Fig. 2, the final corrected charges BOCE�� are calculated via
projection of secondary −perturbation× charges onto the primary cavity, and the
corresponding corrected potential then calculated. The second cavity correction is
performed only at the final stages of the evaluation of the solvation effects. In principle,
one could enable an iterative procedure to optimize the OCE correction, or implement
a multiple-cavity approach that not only enables one to optimize the ability to capture
any outlying effects, but also offers the opportunity to include such things as variable
permittivity effects.

In this work, we focus on three aspects of methodology comparison for these
strategies for ab initio solvation phenomenon: a) the general behavior of methodology
for prediction of accurate solvation effects, b) stability, computational cost, and
efficiency issues, and c) potential for algorithmic extensions.

General Behavior of COSab-DC and COSab-DM. As laid out in the discussions
above, the −corrected× potential by either the DM and DC methods is approximate, but
different, depending on the method used. In the DM method, the −corrected× potential
is approximated by means of a distributed multipole representation of the solute, which
is not a fully −exact× representation of the wave function, for obvious reasons. In the DC
method, the positioning of the second cavity beyond the initial cavity is essentially a
−parameter×, and so the resulting −corrected× potential can only be an approximation. In
either case, however, the −corrected× potential is more accurate for the solution-phase
computation than is the exactly integrated potential, since it includes the influence of
any charge lying outside the cavity. We have illustrated, in fact, in previous studies
[10] [15] [16] as well as in this work, that the use of DM or DC methodology completely
eliminates the OCE, is basis-set insensitive, and accurate to within experimental error
for the electrostatic component of the solvation energy.

By construction, CSM methods retain some nature of approximation, and,
therefore, instabilities can arise for a number of purely algorithmic reasons. Examples
of numerical instabilities may be as dramatic as the inability to converge either a single-
point solvation energy for a specific geometry or to an optimized solution-phase
geometry and corresponding energy, to a more-minor but disconcerting fluctuation in
any of these energies (e.g., fluctuations in the SCF procedure reflected in the fourth or
fifth decimal place). Typically, such effects will be more pronounced for some
molecules than others. Thus, although a computation may successfully converge
towards the correct ab initio solvation energy, it becomes important to carefully inspect
the result, as such instabilities can be indicative of more-fundamental problems, as we
will discuss.

In general, numerical instability is inherent to any model that is not completely
variationally embedded within the SCF procedure. In other words, in most continuum
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electrostatic methods, there is a branching back and forth between specialized solvation
routines and the SCF iterative procedure. For example, with each new geometry, one
must reconstruct the molecular cavity and associated cavity charges for the next SCF
cycle. As such, the overall behavior of the model is influenced by such things as the
specifics of the cavity construction on each update and the representation of charge on
the cavity surface, and how the energetic cost for the creation of cavity segment charges
is handled within the algorithm. Below, we address the representation of charge
together with the cavity construction and update procedure and the influence on the
SCF procedure, followed by a discussion of energy-cost issues.

Cavity Construction and Surface-Charge Generation. Cavity construction, in
general, is based on the generation of a basic grid from an iterative refinement of
triangles beginning with a regular icosahedron (Fig. 3). This is followed by a series of
projections onto the final solvent surface, such that the cavity size is essentially Van der
Waals radii �20% [33]. The basic points on the surface are then gathered into
segments. The detailed nature of the cavity-construction algorithm is an inherent part
of the quality of the solvation model. In particular, for a variety of interesting molecular
constructs, different regions of the molecular cavity can have different sensitivity to
surface discretization, requiring special considerations of segment partitioning and size,
specific inclusions of effects of segment�segment charge-contact areas embedded in
crevices of molecular surfaces, and/or properly treating cavities having very large
segments near very small segments. A specific example involves the ability to include
effects of major charged regions, which would have remain −hidden× or embedded in
crevices by standard routines, that relies only on Van der Waals or solvent-accessible
surface construction (Figs. 3 and 4,a). Specialized segmentation procedures become
necessary at the junctions of any steep surfaces in the molecular configuration, so that
their interaction energies are realistically assessed.

Additionally, a notoriously difficult situation for many CSMs is the handling of T-
shape molecules (Fig. 4,b), where the construction of any solvent surface is inhibited
the slight contact of interacting spheres. By some surface routines, the problem is solved
by constructing two separate molecular surfaces, whose interaction with the solvent has
to be synchronized at each step of the iterative procedure. This can cause numerical
instability and inaccurate assessment of solvation phenomena.

Similar situations can be found when dealing with transition states and other
structures that occur along a reaction path, where one potentially encounters situations
of unusually long bonds and unusual angles. Since the ability to accommodate change in
the cavity that occurs in response to the molecular changes through the progression
along the reaction path is crucial to the realistic assessment of solvation phenomenon
for the reaction process, as in our companion paper, the enhanced cavity-construction
algorithm is very important for realistic solvation modeling in general.

Fig. 3. Schematic of molecular-shaped cavity-surface representation
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Many of these issues can specifically be addressed through careful cavity-
construction algorithms. In fact, the current cavity-construction algorithm within our
COSab model is attributed to one of our collaborators Klamt [55], who has continually
made enhancements to the routine, targeting problems as they have arisen during
studies of various molecular constructs. Algorithmically, such problems arise partly
from calculation of an interaction matrix of elements for the interaction of very small
segments associated with the crowded areas (e.g., crevices) with the more normally
sized segments, by means of the center approximation for the latter segments. If a very
small segment is very close to a much larger sphere segment, this sometimes causes a
numerical instability in the Cholesky factorization, which is associated with the charge
calculations. Additionally, when one tries to construct the segmentation for molecular
features that have perpendicular junctions, care has to be taken to avoid spheres that
slightly intersect at the tight junction. If not properly accounted for, then the resulting
charges that are calculated and fed back into the SCF procedure do not properly
represent these molecular features, and, therefore, the resulting solvation energies will
be missing these key interactions.

A basic assumption in the representation of charge on any particular segment of the
cavity surface is that there is a homogeneous distribution on that segment ± in other
words, that a single charge can represent that segment. If the segment size is taken too
large, this assumption naturally breaks down. Since the set of surface charges for the
entire molecular cavity is generated only once per geometry optimization, when the
assumption of homogenous electron density on a segment is not fully realized, the
energies in the SCF cycle can show small observable fluctuations.

Table 1 shows the variation of electrostatic solvation energy with finer and finer
cavity discretization for several small molecular constructs, for both the DM and DC
implementations. The value of discretization represents the number of segments per
atom and controls the size of the segments on the cavity surface. The mean number of
basic points per segment is set to a value that corresponds to the number of segments
(NSPA) on a complete sphere. The basic points are constructed to achieve the most-
compact segments. The algorithm described for defining a relatively small number of
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and b) ball-and-stick with translucent surface of a T-shaped molecule ((6R)-1-methyl-6-(1,5-dimethylpyrimi-

done)-5,6-dihydrothymine)



segments composed of sets of basic points enables the calculation of the segment
interactions by summation over the interactions of the corresponding basic points. The
resulting increase in accuracy allows achievement of the continuum limit with a
moderate total number of segments.

In these rather simple molecular systems, we see the importance of using an
adequate discretization to obtain the desired chemical accuracy with such computa-
tions. While in a relatively nonpolar molecular system such as CH4, there is very little
effect of discretization on predicted solvation energy, for the more-polarized systems,
the effect can be more dramatic, with errors over 1 kcal/mol. The effect is slightly more
dramatic when more-sensitive basis-set descriptions are used, as shown for HF. For
more-complicated molecular systems, such as the structures in the companion paper,
the effect can be much larger. For example, in those compounds, at very low values of
discretization (e.g., NSPA� 12), one can find up to 50% errors in energetics (as
compared to NSPA� 92), 10 ± 15 kcal/mol of which is due to OCE. Additionally, often
it is the case that the calculation will not converge at all for low values of discretization
(e.g., acetylene in Table 1). Nonetheless, we see a quick leveling off such that the
highest levels of discretization are often unnecessary.

Energetic Cost for the Creation of Cavity-Segment Charges. For both DC and DM
methods, the cost for creating the surface charges, 1/2*��*qDM and 1/2*�*qDC, has
been, until now, included outside the SCF (Fig. 2, path Co). In the DM implementation,
the correction is evaluated from the −corrected× potential and not the directly integrated
potential generated within the SCF cycle. In the DC method, the correction is
evaluated from the directly integrated potential, but does not yet include the effects of
any outlying charge. As a result, it is prudent to investigate the behavior of the SCF
convergence so ensure that iterative procedure exhibits variable behavior. Even though
the evaluation of one and two electron integrals and subsequent formation of FOCK
matrix does include the effect of the solvent, it is not completely balanced with the cost
for the creation of the charges immediately within the SCF, but done outside the SCF,
as is the correction due to outlying charge.

We have evaluated the behavior of the SCF with the cost for creating surface
charges performed both inside and outside the SCF cycle (Fig. 2, path Ci). We have
carried this out for both the DC and DM methods and have found that there can be
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Table 1. Effects of Discretization on RHF/6-31G(2d,p) Solvation Energies [kcal/mol] a) for CH4, H2O, and HF

Discretizationb) CH4 HF H2O C2H2

�GDC �GDM �GDC �GDM �GDC �GDM �GDC �GDM

12 � 0.37 � 0.39 � 5.61 (� 6.3) � 7.00 (� 8.0) � 7.72 � 9.61 ± ±
32 � 0.41 � 0.39 � 5.91 (� 6.6) � 7.14 (� 8.1) � 8.09 � 9.44 � 4.3 � 5.2
42 � 0.40 � 0.38 � 5.94 (� 6.7) � 7.15 (� 8.2) � 8.12 � 9.43 � 4.4 � 5.2
92 � 0.39 � 0.35 � 6.10 (� 6.8) � 6.60 (� 7.5) � 8.13 � 8.81 � 4.5 � 4.9

162 � 0.38 � 0.35 � 6.08 (� 6.8) � 6.44 (� 7.3) � 8.14 � 8.64 � 4.5 � 4.8
362 � 0.36 � 0.33 � 6.10 (� 6.8) � 6.21 (� 7.0) � 8.10 � 8.31 � 4.5 � 4.6
482 � 0.36 � 0.33 � 6.10 (� 6.9) � 6.16 (� 7.0) � 8.10 � 8.22 � 4.5 � 4.5

a) Numbers in parenthesis refer to DZV� (2d,p) computations performed additionally for HF. b) Number of
segments per atom. Calculations are geometry optimizations performed at RHF/6-31G(2d,p).



slight fluctuation in the SCF energetics depending on the placement of the correction
factor, thereby interfering with our ultimate goal of chemical accuracy in CSM
methods. We illustrate the extent of this fluctuation for two molecular systems, OH�,
which has been shown to have large OCE effects, and irofulvene (HMAF) an example
from the companion paper.

In a small diffuse system such as the OH� ion, the magnitude of the fluctuation even
for particularly coarse segment size is well below 0.005 kcal/mol regardless of the
placement of the cavity charge cost as illustrated in Fig. 5. The fluctuation is completely
eliminated with proper segmentation size and basis set functionality, and placement of
the cost function inside the SCF.

Perhaps a more-relevant example has been taken from one of the structures
(HMAF) in the companion paper. For this illustration, we performed a solvent
calculation with a lower-level basis set (RHF/6-31G(d)), and a typical segmentation
size (92), with the cavity-charge-creation cost both inside and outside the SCF. In this
case, due to the more-complicated nature of the cavity structure, and the limited
flexibility of the basis set, one finds much more-dramatic SCF fluctuations depending
on where the correction is placed. With the correction placed outside the SCF, the
fluctuation in energetics is observed to vary over 100 kcal/mol before settling down to
the final prediction. When the correction is placed inside the SCF iterative procedure,
the fluctuation is completely eliminated by implementation of the DC method and
nearly completely eliminated (e.g., � sub 0.005 kcal/mol) with the DM method.

In the DM method, an additional characteristic of the model that causes this tiny
remaining fluctuation noted in the above analysis is the result of the charges in the DM
model being generated from the −corrected× potential, which was computed by means of
the distributed multipole representation of the quantum-mechanical field. The

Fig. 5. Variation in SCF fluctuation with DC and DM methods as a function of segmentation size for OH�
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−corrected× charges generated that, therefore, include the effects of the charge lying
outside the cavity are then not only used to calculate 1/2*�*qDC , but are also fed
back into the quantum-mechanical SCF procedure for generation of the field (which
inherently does not include the outlying charge). Depending on how large a difference
there is between � and ��, fluctuations within the SCF cycle could actually occur.
Such a phenomenon is a direct result of underestimating of the solvent back-
polarization in the direct integration, and, in fact, the more outlying the charge
associated with a molecule, the more noticeable such a phenomenon would be. Thus,
proper segmentation is an important component, again relating back to the discussions
above. However, again with careful consideration of computational set-up, these effects
are minimized.

While such arguments may seem somewhat esoteric since, with proper implemen-
tation and care in the selection of such factors as cavity segmentation and level of
theory, the methods as presented provide very accurate predictions of electrostatic
solvation, our goal is to investigate all sources of error before considering non-
electrostatic effects. It is our experience that several of these errors can be extensive in
some continuum solvation methods and, in certain cases, computations are not feasible.
Additionally, there is a concern that the parameterization schemes used to include
nonelectrostatic effects in some model implementations become contaminated by
contributions from errors made due to factors such as OCE, inconsistencies in method,
and other sources. Our preference is to understand nonelectrostatic effects more from a
quantitative view when possible. We begin to address such effects below.

Computational Costs and Efficiency. We have analyzed the two OCE methods in
terms of computational expense both with respect to the corresponding gas-phase
computations, as well as with respect to each other. Basically, the DM and DC
strategies have nearly identical timing, with the exception of one component of the
former method that we have found can be rather expensive in the current
implementation. This component has to do with the distributed multipole computations
that are performed for each geometry cycle. This is a portion of the code that has yet to
be optimized either sequentially or with parallel strategies. We find that the additional
analysis within the DM routine can take from 10 ± 50% longer in CPU time compared
to gas-phase calculations depending on molecular construction. Fig. 6 illustrates the
timing data for a complete calculation by the DM method in a case where the additional
computations are on the higher end of the cost range, along with the specific timing for
only the distributed multipole component of the computation. One can see that the
majority of the computation is in the evaluation of the distributed multipoles. We have
recently discovered a strategy for parallelization of this portion of the code that will
bring this cost down considerably.

Given that the DC and DM behave almost identically with the exception noted
above, we show two additional comparisons only with the former method. Fig. 6 shows
timing results for a larger set of molecules of variant functionality. Over the set of 20
molecules, we find an average increase in CPU time of ca. 32% for the solution-phase
computations, with values as low as 5%. In general, as we perform such computations
for research studies of real molecules where the number of atoms per molecule is
increased over our test set, that we see a lower and lower overhead cost for the solution
computation, depending on the complexity.
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This latter point is demonstrated in Fig. 6,b for the set of 20 molecules, where we
see a rather dramatic decline in percentage CPU change from gas phase to solution
phase in the progression from atoms and diatomics to larger molecules. In particular, a
specific example from our companion paper on the chemical-reaction processes for the
illudin-based molecules, required, on average, at most 6% more time for the solution-
phase computations, and, in several systems, the computations were even somewhat
(e.g., 10%) faster, since the density actually converged faster (i.e., after fewer iterative
cycles) in those cases. All of these computations were performed on a Pentium4
2.6 GHz processor. In general, due to the localizing electric field created by the surface
charges, the convergence of the solution-phase wave function should actually take no
more, and, as observed, can take less, time than the respective gas-phase calculation,
depending on the molecular system and the structure from which the calculation is
initiated.

Finally, we note some additional timings from the new DFT- and MP2
implementations of COSab in GAMESS in Table 2. The direct overhead for solvation
can be gleaned from the first two entries showing gas-phase and DC results, and as
already pointed out, this is fairly small and a larger component of the time than are
larger molecular systems. Beyond these small percentages, the remaining increase in
timing in the next three entries give one a feel for the costs associated with DFT- and
MP2-type correlative treatments, with MP2 being the most costly, as is well known, and
our grid-free DFT implementation being more costly than the grid-based DFT.

Nonelectrostatic Considerations. In the forgoing solvation methodology analysis, we
have considered only the electrostatic component of the solvation energy. The total
solute�solvent system energy (Etot inEqn. 1) is expressed as a sum of a component due

��������� 	
����� ���� ± Vol. 86 (2003)4124

Fig. 6. Gas-phase vs. solution-phase timing results for a set of 20 molecules. a) CPU Time [s] for gas- and
solution-phase computations. b) Percent increase in CPU time for solution-phase compared to gas-phase

computation vs. number of atoms.



to electrostatics, which includes back-polarization of the solvent onto the solute, as well
as a component that includes dispersive and cavitation energies, which are typically
addressed together as the nonelectrostatic energy [56].

Etot � Egp�Esol (1)

Esol� (Ediel�Eback-pol)�Enelect (2)

The creation of the cavity in a medium costs energy, i.e., is destabilizing, while the
dispersion interactions between the solute and solution contribute to stabilization. Such
short-range effects, which include costs associated with, e.g., H-bonding and prefer-
ential orientation of a solvent near an ion, are characteristically concentrated in the first
solvation shell. These effects are typically not captured in any continuum model
approach to solvation. Cavitation necessitates the inclusion of entropy factors and a
specific accounting for the loss of solvent�solute Van der Waals interactions.
Dispersion effects require the accounting of the new Van der Waals interactions
established between the solute and solvent.

Many continuum-model approaches account for cavitation and dispersion by way of
parameteric fits to experimental data [2] [57] [58]. Both factors are proportional to
surface area and can be fit via Eqn. 3:

�Gcavity ��Gexpt �
�

atoms�i

�iSi
(3)

Until now, we have chosen to concentrate on first understanding many of the details of
the basic CSM method associated with calculation of the electrostatic component, such
as those presented in this work, before moving on to the inclusion of nonelectrostatic
effects so as not to mask inherent model errors. Additionally, it turns out that through
careful consideration of the fine points of the model itself, one can derive appropriate
ways to include features such as nonelectrostatic effects, the appropriate solvent radii,
and predictions made for nonaqueous media. A case in point is the careful
consideration of solvent surfaces made by Klamt et al. in the COSMO-RS model

��������� 	
����� ���� ± Vol. 86 (2003) 4125

Table 2. Timing Data for HDFT/TZV(2d,p)//RHF/TZV(2d,p) and MP2/TZV(2d,p)//RHF/TZV(2d,p) Solva-
tion-Energy Calculations (running on Pentium4 2.6GHz Dell)

H2O AcOH Octanol

�Gelect

[kcal/mol]
Total CPU time
[s]

�Gelect

[kcal/mol]
Total CPU time
[min]

�Gelect

[kcal/mol]
Total CPU time
[min]

Gas phase ± 1.4 ± 2.4 ± 51.0
DBLCAVa) � 8.4 2.3 � 8.9 2.7 � 6.5 53.6
DFT-GFa)b) � 7.8 16.5 � 7.3 22.7 � 5.6 426.6
DFT-Ga)c) � 7.7 8.8 � 7.3 5.2 � 5.5 94.5
MP2a) � 6.7 3.7 � 8.2 20.7 � 6.3 833.0

a) DBLCAV OCE Correction method used. b) Grid-free DFT in GAMESS. c) Grid-based DFT in GAMESS.



[33] [59]. Given this, it is important to establish some perspective on this issue with
respect to our current model. As such, we have put together an array of structures
(Fig. 7) that fall into roughly the same molecular shape and volume categories,
providing a consistent set from which to evaluate cavitation effects, under the
constraints of the current model implementation.

We have optimized all structures in the gas phase and solution phase at the RHF/6-
31G(2d,p) level of theory, and performed subsequent single point MP2/6-31G(2d,p)
computations to check for effects of dynamic correlation. Through preliminary
investigation we find that the use of more-substantial basis sets does not dramatically
change the results. Table 3 shows the results for all molecules in Fig. 7, including the
computed single-point volume, RHF-COSab/6-31G(2d,p)//RHF/6-31G(2d,p), opti-
mized volume, RHF-COSab/6-31G(2d,p)//RHF-COSab/6-31G(2d,p), and solvation
energetics at the MP2-COSab/6-31G(2d,op)//RHF-COSab/6-31G(2d,p). The MP2
single-point energies were performed with our newly implemented MP2-COSab
methodology, which is now available for both open- and closed-shell molecules.

At the outset, it is useful to look only at the neutral species in Table 3. In this set, we
can eliminate the effect of cavitation based on surface area (e.g., Van der Waals
interactions) and volume effects since these are essentially constant, and the effect of
cavitation based on any ionic contribution. Of these, then, when one compares the two
zero-dipole compounds, C(Me)4 and CCl4, the difference in solvation energy is very
small, �0.7 kcal/mol in the former to �1.4 kcal/mol in the latter, i.e., only 0.7 kcal/mol.

Fig. 7. Molecule systems that have similar shapes and volume properties over a range of ionic states
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This is an indication of the polarizability effect of the additional Cl environment, and of
the ability of the model to make such an assessment. Taking a look at the full set of data
for neutral compounds in Fig. 8,a, where we now have included also the much larger
dipole contribution, the plot of dipole vs. electrostatic solvation is linear with a r2� 0.88,
which shows the ability of the model to respond to the multipolar (dipole) features of
the molecules.

One might expect, in a comparison of tetramethylborate with tetrachloroborate,
that there would be a similar if not larger electrostatic component from the octapole-
moment change than was observed for the neutral case. However, the data actually
shows that the two compounds have almost identical solvation energies, �53.1 and
�53.3 kcal/mol respectively. A key difference here is that tetrachloroborate has a
larger volume than tetramethylborate, because the B�Cl bond is so much longer
(1.87 ä) than the respective B�C bond (1.66 ä). The overall larger ionic radius implies
a lower solvation-energy contribution from the ion. In this case, the volume-change
penalty nearly perfectly balances the benefit from the higher multipole contributions.

Fig. 8,b shows that a plot of dipole moment vs. solvation energy of the B�Cl
compounds is linear with a high correlation factor (r2� 0.99). This would indicate that
the dominant factor causing variance in the modeled solvation of these compounds is
the multipole-moment character. This may appear to be in contrast to the volume
arguments we just made, but the volume changes here are simply too small and are
compensated by yet higher polar moments.
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Table 3. RHF/6-31G(2d,p)//RHF/6-31G(2d,p) Molecular-Solvent-Volume Extents, Electrostatic Energies
[kcal/mol], and Molecular Dipoles [D] for Molecules in Fig. 7

Molecule Charge Single-
point
volume

Optimized
volume

Gas-
phase
dipole

Dipole in
H2O

MP2
Dipole
in H2O

Solvation
energy

MP2a)
Solvation
energy

CMe4 0 102.9 102.7 0 0 0 � 0.8 � 0.7
CCl4 0 118.2 118.2 0 0 0 � 1.4 � 1.4
CMeCl3 0 114.4 114.4 2.0 2.6 2.5 � 3.5 � 3.6
CMe2Cl2 0 110.5 110.9 2.6 3.5 3.2 � 4.9 � 4.8
CMe3Cl 0 107.6 108.0 2.6 3.8 3.4 � 5.0 � 4.6
PMe3O 0 103.7 103.7 4.4 6.1 5.6 � 16.1 � 14.0
SMe2O2 0 91.3 91.5 4.7 6.6 5.8 � 17.4 � 14.3
PMe4 1 115.2 115.1 0 0 0 � 53.2 � 52.7
NMe4 1 101.3 100.9 0 0 0 � 55.2 � 54.5
BCl4 � 1 123.7 123.2 0 0 0 � 53.5 � 53.3
BMe4 � 1 108.1 108.1 0 0 0 � 53.8 � 53.1
BMeCl3 � 1 119.8 119.9 1.3 2.1 1.9 � 56.6 � 56.4
BMe3Cl � 1 112.5 112.8 0.41 1.6 10.1 � 57.4 � 75.6
BMe2Cl2 � 1 116.7 117.0 1.7 3.0 2.8 � 59.3 � 59.0
MESO3 � 1 81.1 80.8 3.5 5.6 5.0 � 77.3 � 74.6
PMe2O2 � 1 93.1 93.0 4.1 6.7 6.1 � 81.8 � 79.2
SO4 � 2 70.1 70.0 0 0 0 � 252.4 � 250.6
PMeO3 � 2 82.9 82.7 2.7 5.5 5.2 � 261.1 � 259.0
PO4 � 3 73.8 72.6 0 0 0 � 561.9 � 563.8

a) Single-point solvation energies also computed at the MP2/6-31G(2d,p)//RHF/6-31G(2d,p) level.



In fact, all ions of unit charge should actually exhibit constant solvation energy per
volume, when the condition that only charge interactions are important is met. This can
be tested across the four compounds, NMe4, PMe4, and BMe4, and, additionally, the
species NH4, BH4, BF4, and K to establish a more-adequate regression analysis. In this
extracted set of data, although symmetry restricts the magnitude of the higher
multipole moments in these compounds (octapole/hexadecapole moments only),
volumes across this series changes considerably, over the range of 30 ± 115 ä3. A plot of
volume vs. electrostatic solvation energy for these chemically unrelated compounds is
monotonic and quasi-linear, as shown in Fig. 9. In our original analysis, we included
BCl4, which one might expect to fit in this linear relationship, but does not quite (e.g.,
with such a small test set the change in r2 to 0.96 is relatively dramatic with the
addition). This will be further addressed below.

From this regression analysis (Fig. 9,a), a hypothetical value for a unit-charged ion
of volume 70 ä3 (the volume of SO2�

4 ) can be calculated as �66.6 kcal/mol. As the
solvation energy responds to the square of the charge, one would then predict a value of
�266.6 kcal/mol, for the solvation energy of the �2 ion based solely on a regression of
the unit-charged ions. Indeed, this value agrees well in this context with the
independently calculated solvation energy of SO2�

4 (252.4 vs. 266.6, 5% overestima-
tion), and further highlights the dominance of electrostatic interactions in our solvent
model.

That BCl4 is an apparent outlier in the above analysis (Fig. 9,b) would imply that
something besides volume affects the linear relationship. Such nonvolume-related
effects could be geometric in nature, or due to differences in the multipolar natures of
the compounds. A look at the geometries across the set reveals no significant
differences. If one analyzes the distributed multipole data from the compounds NMe4,
PMe4, BMe4, and BCl4, however, one finds some interesting features.
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Fig. 8. Plots of electrostatic solvation energy vs. dipole moment for a) neutral molecules and b) boron compounds
(from Fig. 7 and Table 3)



As expected for tetrahedral systems, the first multipole found in these tetrahedral
compounds is an octapole. Compared to a quadrupole, an octapole has more degrees of
freedom and is, therefore, more difficult to model with theory (Fig. 10).

According to the definitions of spherical harmonic multipoles, there are six
components of the octapole. In the tetrahedral compounds analyzed, only one of these
components (along the z axis, Q32s� f*xyz) is nonzero. For the N- and P-analogues, this
component is very, very small (for NMe4, 2.0 and PMe4, 1.2). With the addition of the
B, as in BMe4, the component is much larger in magnitude, 47.0. This would imply a
much larger electrostatic distribution along the lines of Fig. 10. When the ligands are
changed to Cl, in BCl4, the magnitude of this component again diminishes, but only to
22.7.

A further look at the hexadecapoles completes the analysis. The hexadecapole
moment is even more difficult to visualize, but can be related to not only the z extent,
but also a more-cylindrical extent, with nonzero components related to Q40� f(z) and
Q44c� f(x,y) as illustrated in Fig. 10,b. While the hexadecapole components of NMe4,
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Fig. 9. Regression analysis of volume vs. electrostatic solvation energy for a subset of the species in Fig. 7. a) BCl4
excluded; b) BCl4 included.

Fig. 10. Schematic representations of an octapole and a hexadecapole



PMe4, and BMe4 are all nearly identical, and large (60 ± 90), the analogous components
of BCl4 are ca. fourfold smaller, which would indicate a much tighter organization of
charge, likely due to the difference between B and Cl in electronegativity. Also, the
small size of the B-atom enables the Cl-atoms at the vertices to concentrate most of the
charge in a smaller space. As such, it would appear that BCl4 is, in fact, a bit different in
its multipolar makeup, enough to create the offset from linearity observed in the above
analysis.

Including Nonelectrostatic Effects in the Model. In reality, electric fields on the
molecular surfaces of polar solutes are typically so strong that the majority of the
solvent polarizability (reorientation of static dipoles) is almost at saturation. As such,
there is no longer the linear behavior associated with the macroscopic limit. A novel
extension to our present solvation model, as first presented by Klamt [59], would
actually avoid the questionable dielectric approach, providing a modification for
nonlinear behavior. In such an extension, deviations from ideal screening that occur
within any solvent would be described as pairwise misfit interactions of the ideal
screening charges on contact points of the molecules in the fluid. Such a description
represents an overall generalization of CSMs, as it no longer depends on experimental
data or any parameterization of the solvent. On the basis of screening energies, surface
areas, and screening surface-charge densities, the intermolecular interactions in a liquid
system can, therefore, be described, providing a much more-efficient means than the
traditional description via electrostatic and Van der Waals interactions, since the
explicit position of all molecules in space has not to be taken into account, and fewer
parameters are required for the model.

Conclusions and Future Work. ± Detailed chemical treatments of molecular and
electronic structure with the inclusion of the effects of the environment now enable one
to predict molecular geometry, follow the reaction paths of chemical transformations,
predict electrostatic effects in a variety of environments, estimate pKa shifts, redox
potentials, and provide interpretations of spectroscopic probes of molecular environ-
ments with an accuracy not offered by other more-simplistic modeling techniques.

In the methodology presented, solvent effects are included directly in the Fock
matrix such that self-consistency is maintained with respect to the solvent charges and
the interaction potential. In the present extensions and evaluations, we show
comparison of and implications for capturing the outlying charge effects with two
different strategies, both of which prove to be solid methods for capturing this error, but
have different advantages and disadvantages for providing a generalized methodology.
Additionally, we present a variety of significant modifications for overall improvement
in performance and stability in these models, from improved numerical procedures
(elimination of computations involving inverse matrices, positioning of mathematical
manipulations within the SCF, and clever strategies for dynamic memory allocation and
parallel computing efficiency), to more-advanced cavity construction and surface-
charge-evaluation techniques, a majority of which are very important for our
applications that involve transition states and reaction paths, dynamics applications,
and weak complexes. We feel that such a detailed analysis has opened avenues to
extend the methodology to larger molecular constructs by means of rigorous hybrid
methodologies, variable permittivity strategies, and, most importantly, to a fully
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variable methodology, the latter of which should, in principle, eliminate many of the
problems associated with small variations and parameterizations associated with the
incorporation of nonelectrostatic components.

Investigations of biochemical systems by such treatments have proven to offer an
auspicious interface between experiment and theory, an example of which is shown in
the companion paper with the interpretation of the mechanistic information that is
important to the understanding of the selective toxicity of such compounds towards
certain forms of malignant tumors, and, thereby, significantly enhancing drug design
studies. The ability to study the potential-energy surface (PES) around specific reaction
sites in more detail is critical. In the context of the continuum model already presented,
we have incorporated the modifications necessary to follow the solute geometry
through the progression along the reaction path as it is accompanied by a change in the
shape of the cavity, which contributes to the energy of the system. We have recently also
incorporated the ability to carry out vibrational analysis in solution, which enables us to
fully establish the character of the stationary points on such a reaction profile. Future
work will involve the extensions towards prediction of rate constants in solution.
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